当前位置:首页 > 情感技巧 > 正文内容

大数据和黑客是一回事吗(为什么会有黑客)

hacker3年前 (2022-05-27)情感技巧209
本文导读目录:

大数据安全的六大挑战

大数据安全的六大挑战_数据分析师考试

大数据的价值为大家公认。业界通常以4个“V”来概括大数据的基本特征——Volume(数据体量巨大)、Variety(数据类型繁多)、Value(价值密度低)、Velocity(处理速度快)。当你准备对大数据所带来的各种光鲜机遇大加利用的同时,请别忘记大数据也会引入新的安全威胁,存在于大数据时代“潘多拉魔盒”中的魔鬼可能会随时出现。

挑战一:大数据的巨大体量使得信息管理成本显著增加

4个“V”中的第一个“V”(Volume),描述了大数据之大,这些巨大、海量数据的管理问题是对每一个大数据运营者的最大挑战。在网络空间,大数据是更容易被“发现”的显著目标,大数据成为网络攻击的第一演兵场所。一方面,大量数据的集中存储增加了泄露风险,黑客的一次成功攻击能获得比以往更多的数据量,无形中降低了黑客的进攻成本,增加了“攻击收益”;另一方面,大数据意味着海量数据的汇集,这里面蕴藏着更复杂、更敏感、价值巨大的数据,这些数据会引来更多的潜在攻击者。

在大数据的消费者方面,公司在未来几年将处理更多的内部生成的数据。然而在许多组织中,不同的部门像财务、工程、生产、市场、IT等之间的信息仍然是孤立的,各部门之间相互设防,造成信息无法共享。那些能够在不破坏壁垒和部门现实优势的前提下更透明地沟通的公司将更具竞争优势。

【解决方案】 首先要找到有安全管理经验并受过大数据管理所需要技能培训的人员,尤其是在今天人力成本和培训成本不断上升的节奏中,这一定足以让许多CEO肝颤,但这些针对大数据管理人员的巨额教育和培训成本,是一种非常必要的开销。

与此同时,在流程的设计上,一定要将数据分散存储,任何一个存储单元被“黑客”攻破,都不可能拿到全集,同时对于不同安全域要进行准确的评估,像关键信息索引的保护一定要加强,“好钢用在刀刃上”,作为数据保全,能够应对部分设施的灾难性损毁。

挑战二:大数据的繁多类型使得信息有效性验证工作大大增加

4个“V”中的第二个“V”(Variety),描述了数据类型之多,大数据时代,由于不再拘泥于特定的数据收集模式,使得数据来自于多维空间,各种非结构化的数据与结构化的数据混杂在一起。

未来面临的挑战将会是从数据中提取需要的数据,很多组织将不得不接受的现实是,太多无用的信息造成的信息不足或信息不匹配。我们可以考虑这样的逻辑:依托于大数据进行算法处理得出预测,但是如果这些收集上来的数据本身有问题又该如何呢?也许大数据的数据规模可以使得我们无视一些偶然非人为的错误,但是如果有个敌手故意放出干扰数据呢?现在非常需要研究相关的算法来确保数据来源的有效性,尤其是比较强调数据有效性的大数据领域。

正是因为这个原因,对于正在收集和储存大量客户数据的公司来说,最显而易见的威胁就是在过去的几年里,存放于企业数据库中数以TB计,不断增加的客户数据是否真实可靠,依然有效。

众所周知,海量数据本身就蕴藏着价值,但是如何将有用的数据与没有价值的数据进行区分看起来是一个棘手的问题,甚至引发越来越多的安全问题。

【解决方案】 尝试尽可能使数据类型具体化,增加对数据更细粒度的了解,使数据本身更加细化,缩小数据的聚焦范围,定义数据的相关参数,数据的筛选要做得更加精致。与此同时,进一步健全特征库,加强数据的交叉验证,通过逻辑冲突去伪存真。

挑战三:大数据的低密度价值分布使得安全防御边界有所扩展

4个“V”中的第三个“V”(Value),描述了大数据单位数据的低价值。这种广种薄收似的价值量度,使得信息效能被摊薄了,大数据的安全预防与攻击事件的分析过程更加复杂,相当于安全管理范围被放大了。

大数据时代的安全与传统信息安全相比,变得更加复杂,具体体现在三个方面:一方面,大量的数据汇集,包括大量的企业运营数据、客户信息、个人的隐私和各种行为的细节记录,这些数据的集中存储增加了数据泄露风险;另一方面,因为一些敏感数据的所有权和使用权并没有被明确界定,很多基于大数据的分析都未考虑到其中涉及的个体隐私问题;再一方面,大数据对数据完整性、可用性和秘密性带来挑战,在防止数据丢失、被盗取、被滥用和被破坏上存在一定的技术难度,传统的安全工具不再像以前那么有用。

【解决方案】 确立有限管理边界,依据保护要求,加强重点保护,构建一体化的数据安全管理体系,遵循网络防护和数据自主预防并重的原则,并不是实施了全面的网络安全护理就能彻底解决大数据的安全问题,数据不丢失只是传统的边界网络安全的一个必要补充,我们还需要对大数据安全管理的盲区进行监控,只有将二者结合在一起,才是一个全面的一体化安全管理的解决方案

挑战四:大数据的快速处理要求使得独立决策的比例显著降低

“4个“V”中最后一个“V”(Velocity),决定了利用海量数据快速得出有用信息的属性。

大数据时代,对事物因果关系的关注,转变为对事物相关关系的关注。如果大数据系统只是一种辅助决策系统,这还不是最可怕的。事实上,今天大数据分析日益成为一项重要的业务决策流程,越来越多的决策结果来自于大数据的分析建议,对于领导者最艰难的事情之一,是让我的逻辑思考来做决定,还是由机器的数据分析做决定,可怕的是,今天看来,机器往往是正确的,这不得不让我们产生依赖。试想一下,如果收集的数据已经被修正过,或是系统逻辑已经被控制了呢!但是面对海量的数据收集、存储、管理、分析和共享,传统意义上的对错分析和奇偶较验已失去作用。

【解决方案】 在依靠大数据进行分析、决策的同时,还应辅助其他的传统决策支持系统,尽可能明智地使用数据所告诉我们的结果,让大数据为我们所用。但绝对不要片面地依赖于大数据系统。

挑战五:大数据独特的导入方式使得攻防双方地位的不对等性大大降低

在大数据时代,数据加工和存储链条上的时空先后顺序已被模糊,可扩展的数据联系使得隐私的保护更加困难。过去传统的安全防护工作,是先扎好篱笆、筑好墙,等待“黑客”的攻击,我们虽然不知道下一个“黑客”是谁,但我们一定知道,它是通过寻求新的漏洞,从前面逐层进入。守方在明处,但相比攻方有明显的压倒性优势。而在大数据时代,任何人都可以是信息的提供者和维护者,这种由先天的结构性导入设计所带来的变化,你很难知道“它”从哪里进来,“哪里”才是前沿。这种变化,使得攻、防双方的力量对比的不对等性大大下降。

同时,由于这种不对等性的降低,在我们用数据挖掘和数据分析等大数据技术获取有价值信息的同时,“黑客”也可以利用这些大数据技术发起新的攻击。“黑客”会最大限度地收集更多有用信息,比如社交网络、邮件、微博、电子商务、电话和家庭住址等信息,大数据分析使“黑客”的攻击更加精准。此外,“黑客”可能会同时控制上百万台傀儡机,利用大数据发起僵尸网络攻击。

【解决方案】 面对大数据所带来新的安全问题,有针对性地更新安全防护手段,增加新型防护手段,混合生产数据和经营数据,多种业务流并行,增加特征标识建设内容,增强对数据资源的管理和控制。

挑战六:大数据网络的相对开放性使得安全加固策略的复杂性有所降低

在大数据环境下,数据的使用者同时也是数据的创造者和供给者,数据间的联系是可持续扩展的,数据集是可以无限延伸的,上述原因就决定了关于大数据的应用策略要有新的变化,并要求大数据网络更加开放。大数据要对复杂多样的数据存储内容做出快速处理,这就要求很多时候,安全管理的敏感度和复杂度不能定得太高。此外,大数据强调广泛的参与性,这将倒逼系统管理者调低许多策略的安全级别。

当然,大数据的大小也影响到安全控制措施能否正确地执行,升级速度无法跟上数据量非线性增长的步伐,就会暴露大数据安全防护的漏洞。

【解决方案】 使用更加开放的分布式部署方式,采用更加灵活、更易于扩充的信息基础设施,基于威胁特征建立实时匹配检测,基于统一的时间源消除高级可持续攻击(APT)的可能性,精确控制大数据设计规模,削弱“黑客”可以利用的空间。

大数据时代已经到来,大数据已经产生出巨大影响力,并对我们的社会经济活动带来深刻影响。充分利用大数据技术来挖掘信息的巨大价值,从而实现并形成强有力的竞争优势,必将是一种趋势。面对大数据时代的六种安全挑战,如果我们能够予以足够重视,采取相应措施,将可以起到未雨绸缪的作用。

以上是小编为大家分享的关于大数据安全的六大挑战的相关内容,更多信息可以关注环球青藤分享更多干货

大数据就意味着更大的安全风险吗

大数据就意味着更大的安全风险吗

现如今,围绕着大数据分析所涉及到的相关隐私问题存在着许多的担忧:企业和各国的政府机构是否有权获得如此广泛的个人和群体信息?同时,对于他们收集和处理这些数据信息是否有相关的法律或政策对其进行指导和约束?这其中一个相当关键但却并不经常被人们讨论和关注的问题是安全性。

企业和政府机构所收集、存储、分析和分发大量数据信息是否正面临着安全风险方面的挑战?如果是的话,他们应该怎么做来减轻这些挑战呢?

大数据不仅仅只是大量的数据

从某种意义上说,当一家企业开始收集和存储大量的数据信息时,其就已然成为了一个相当显眼的黑客攻击目标。但更广泛地说,对那些收集了大量有价值的非结构化数据信息的企业而言,其数据信息可能并不存在任何根本性的新威胁。

罗伯特?麦加维引用Brainloop公司全球营销副总裁David Topping的话说:“ 对于黑客攻击而言,那些PB级存储的大数据信息是安全的,因为这些数据的量对于黑客而言根本就太大了。也许除了那些资金雄厚的赞助商之外,一般的黑客都缺乏相关的分析工具来从如此庞大的数据量中提取有意义的信息。换句话说,企业也和这些黑客一样,面临同样严峻而显著的问题:如何从他们所收集的庞大数据中提取有价值的东西出来。因此,对于个别大型数据存储库而言,考虑增加任何超出其它类型数据库的安全性措施并无太大的实施意义,尤其是考虑到这些黑客相对于各大机构的能力往往是有限的。”

环境和细粒度的安全

但仅仅只是因为这些数据是非结构化的或更难进行筛选分析,并不意味着大数据必然是更安全。如果所有的大数据存储库都是有用的,就不能将所有每一条信息都进行同等的维护。正如InfoWorld的安得烈C.奥利弗指出的那样:“您企业所收集的数据越多,保持这些数据细粒度的任务和挑战也就越艰巨。企业如何才能在不牺牲大数据性能的前提下牢牢把握所有这些数据的所有权,并遵守相关的监管规定呢?这促使企业首先需要选择一款大数据解决方案。”

细粒度的数据安全分区对数据访问进行了分类。例如,企业的某部分员工可能只能够访问非财务方面的数据,而较高级的员工则有权访问更多的信息。此外,某些信息可能由另一个部门所拥有,或者对其的使用会被加以限制。我们面临的挑战是如何良好的对一个有组织且安全的系统进行维护,尽管面临着一定的环境困境。因此当企业在面临着在安全和盈利能力之间进行权衡的问题时,他们可以很容易地进行响应:“是的,我们有标准的网络安全,所以我们的数据是安全的。”

大数据不能被匿名化

您企业所受收集的数据越详细,就越是可能涉及到更多的个体私人信息,因此,对于个人隐私和安全问题的关注度也应提高。有CSO指出:“计算机科学家表示他们可以使用不涉及个人可识别信息的数据来重建相关人员的身份数据。例如,如果一家品牌企业或政府机构获得了覆盖某地区一年的客户GPS记录列表,那么,他们可以用该列表来了解一人或多人的身份信息。”在这种情况下,找到一个人的身份信息是非常简单的。例如,在某个时间段根据GPS进行定位,然后从互联网上搜索与该位置有关用户的姓名。一般情况下,这个过程可能会更复杂一点,但从概念上讲,其是一个很容易解决的简单问题。

尽管企业纷纷试图使大数据匿名化,这些企业最好的方法也只是使这些数据“假名化”——让一些信息是假名的,当然仍还是可与一个真实的身份相联系。这一有限制性的匿名化是大数据危险的一部分:黑客和其他恶意方可能无法完成数据的精细分析,但考虑到这些有限信息种类的丰富性,他们可以收集各种可利用的结论,进行欺诈,偷盗或者更糟的行为。

虽然原始数据需要保护,即使其是非结构化大数据存储库的一部分,但大数据所面临的更大的威胁是企业支付了巨大的成本才从大数据分析中获得的有价值的信息。麦加维再次引用 David Topping的话说:“许多企业浪费了太多的预算以保障大数据存储。而他们真正的风险则在相关数据信息的输出方面。由于企业往往很少监视或保护这些数据,围绕着企业分析得出的洞察输出是如何产生的... 大多数安全专家都认为,企业的雇员往往表现得很无辜,但有的的确是大数据被破坏最常见的罪魁祸首。”

企业需要保护大数据,尽管其涉及到某些原始信息,但我们需要将更多的重点放到通过对原始数据分析所获得的洞察见解方面。特别是,这些见解必须至少被视为比原始数据更为重要。

处理大数据的安全问题

接下来的问题便是如何解决这些企业担忧的安全问题。一种方法是为黑客提供一个有吸引力的假目标,以便使得企业能够学习更安全的研究方法来应对攻击,实施保护措施。这一战略或不甚理想,因为其只能当系统已经有一些漏洞时才能发挥作用。但这些弱点是可能被识别和解决的。

引用Forrester公司研究题为《未来的数据安全和隐私报告:关于大数据的控制》IBM指出,“安全专业人士在网络边缘最好进行控制。然而,如果攻击者穿透你的周边,他们将有充分的和不受限制的机会访问你的数据。” 当然,解决方案就在于为数据提供一个安全层,让简单地访问网络还不足以获得如此大的权限。

加密,特别是当处理大数据分析洞察见解时,是保护一种有效的信息保护方式,但其肯定不是一个新概念。

结论

大数据所涉及的隐私问题的确正在受到广泛关注,特别是在爆出美国国家安全局对主要IT企业进行监控的背景之下。一个与之不同但又密切相关的问题是安全性:特别是,企业应如何保护原始的非结构化数据和从大数据分析中得到的洞察见解。不幸的是,数据完全匿名化是不可能的,因为数据信息需要与个人和用于各种用途相联系(有时与其他私人或公共来源相组合)。虽然黑客可能无法窃取数据执行复杂的分析,但他们往往通过粗略地查看一下就足以收集有价值的信息(如在GPS数据的情况下)。随着企业收集的数据逐渐存储进大型数据仓库,如联邦数据服务中心,大数据安全方面亟待需要更多的审查。

黑客是什么样的存在?

我觉得黑客是一个很有技术含量的一个职业。本他们比较的神秘并且今天一些计算机的黑客功能,所以我觉得她是很棒的一个神秘角色。

什么是大数据信息安全的威胁?

在携程信用卡信息泄露、小米社区用户信息泄露、OpenSSL“心脏出血”漏洞等事件中,大量用户信息数据被盗,导致用户网络银行账户发生入侵事件等情况。这些事情发生在个人用户身上。如果类似事件发生在国家财政、政务等相关部门的数据平台系统上,其后果将是不可想象的,对国家网络安全造成的损失将是前所未有的。大数据时代,我国网络安全面临多重安全威胁。

1、大数据信息安全的威胁——网络基础设施和基本的硬件和软件系统由其他人控制

大数据平台依托互联网,为政府、企业、公众提供服务。然而,从基础设施的角度来看,中国互联网已经存在一些不可控的因素。例如,域名解析系统(DNS)是Internet的基础设施之一,使访问Internet变得很容易,而不必记住复杂的IP地址字符串。今年1月,由于DNS根服务器受到攻击,数千万人在数小时内无法访问该网站。根服务器是全球DNS的基础,但全世界有13个根服务器,都是国外的,由美国控制。此外,中国还没有完全实现对大数据平台基础软硬件系统的自主控制。在能源、金融、电信等重要信息系统的核心软硬件实施中,服务器、数据库等相关产品占据主导地位。因此,目前中国的信息流是通过对国外企业产品的计算、传输和存储来实现的。相关设备设置更多“后门”,国内数据安全生命线几乎全部掌握在外国公司手中。2013年棱镜事件的曝光,突显了硬件和软件基础设施对中国数据安全乃至国家安全的重要性。

2、大数据信息安全的威胁——网站和应用程序充斥着漏洞和后门

近年来,由于网站和应用系统的漏洞,由后门引起的重大安全事件频繁发生,以上三起事件都属于这一类。据中国安全公司的网站安全检测服务统计,多达60%的中国网站存在安全漏洞和后门。可以说,网站和应用系统的漏洞是大数据平台面临的最大威胁之一。然而,各种第三方数据库和中间件在中国的各种大数据行业应用中得到了广泛的应用。然而,此类系统的安全状况并不乐观,存在广泛的漏洞。更令人担忧的是,网站的错误修复都不令人满意。

3、大数据信息安全的威胁——除了系统问题之外,网络攻击的手段更加丰富

其中,终端恶意软件和恶意代码是黑客或敌对势力攻击大数据平台、窃取数据的主要手段之一。目前,越来越多的网络攻击来自终端。终端渗透攻击也成为国与国之间网络战的主要手段。例如,著名的针对伊朗核设施的stuxnet病毒,利用Windows操作系统的弱点,渗透到特定终端,渗透到伊朗核工厂的内部网络,摧毁伊朗核设施。此外,针对大数据平台的高级持续威胁(Advanced Persistent Threat, APT)攻击十分常见,可以绕过各种传统的安全检测和保护措施,窃取网络信息系统的核心数据和各种智能。例如,极光袭击谷歌和其他30多家高科技公司就是一个例子。APT攻击结合了社会工程、吊马、脆弱性、深度渗透、潜伏期长、隐蔽性等特点,具有极强的破坏性。它不仅是未来网络战的主要手段,也是对我国网络空间安全危害最大的攻击手段之一。近年来,具有国家和组织背景的APT攻击不断增多,大数据平台无疑将成为APT攻击的主要目标。

大数据信息安全的威胁有哪些?这才是大数据工程师头疼的问题,在携程信用卡信息泄露、小米社区用户信息泄露、OpenSSL“心脏出血”漏洞等事件中,大量用户信息数据被盗,你能处理好吗?如果您还担心自己入门不顺利,可以点击本站的其他文章进行学习。

何谓大数据?大数据的特点,意义和缺陷.

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。

大数据,更多的功能是分析过去,提醒现在,展望未来。广泛应用于商业领域,借以实现精准营销,预测趋势,实现商业利益的最优与最大。体现的价值为:

(1)利用大数据针对大量消费者的消费习惯,精准提供产品或服务;

(2)利用大数据做服务转型,做小而美模式;

(3)不能充分利用大数据价值的企业,将会在互联网压力之下摇摇欲坠。

国家通过结合大数据和高性能的分析,是指效率更加提高,同时也能降低国家运行成本。如:

(1)为成千上万的车辆规划实时交通路线,躲避拥堵;

(2)及时解析问题和缺陷的根源,是制度更加完善。

(3)使用点击流分析和数据挖掘来规避欺诈行为。

大数据的缺陷:

企业遭到黑客攻击,客户的资料大量非法流出,再利用大数据分析挖掘,人群进行分类排除,从而让人更容易受骗。

扩展资料:

2016年3月17日,《中华人民共和国国民经济和社会发展第十三个五年规划纲要》发布,其中第二十七章“实施国家大数据战略”提出:把大数据作为基础性战略资源,全面实施促进大数据发展行动,加快推动数据资源共享开放和开发应用,助力产业转型升级和社会治理创新。

具体包括:加快政府数据开放共享、促进大数据产业健康发展。

大数据时代给信息安全带来的挑战

大数据时代给信息安全带来的挑战

在大数据时代,商业生态环境在不经意间发生了巨大变化:无处不在的智能终端、随时在线的网络传输、互动频繁的社交网络,让以往只是网页浏览者的网民的面孔从模糊变得清晰,企业也有机会进行大规模的精准化的消费者行为研究。大数据蓝海将成为未来竞争的制高点。

大数据在成为竞争新焦点的同时,不仅带来了更多安全风险,同时也带来了新机遇。

一、大数据成为网络攻击的显著目标。

在网络空间,大数据是更容易被“发现”的大目标。一方面,大数据意味着海量的数据,也意味着更复杂、更敏感的数据,这些数据会吸引更多的潜在攻击者。另一方面,数据的大量汇集,使得黑客成功攻击一次就能获得更多数据,无形中降低了黑客的进攻成本,增加了“收益率”。

二、大数据加大隐私泄露风险。

大量数据的汇集不可避免地加大了用户隐私泄露的风险。一方面,数据集中存储增加了泄露风险,而这些数据不被滥用,也成为人身安全的一部分。另一方面,一些敏感数据的所有权和使用权并没有明确界定,很多基于大数据的分析都未考虑到其中涉及的个体隐私问题。

三、大数据威胁现有的存储和安防措施。

大数据存储带来新的安全问题。数据大集中的后果是复杂多样的数据存储在一起,很可能会出现将某些生产数据放在经营数据存储位置的情况,致使企业安全管理不合规。大数据的大小也影响到安全控制措施能否正确运行。安全防护手段的更新升级速度无法跟上数据量非线性增长的步伐,就会暴露大数据安全防护的漏洞。

四、大数据技术成为黑客的攻击手段。

在企业用数据挖掘和数据分析等大数据技术获取商业价值的同时,黑客也在利用这些大数据技术向企业发起攻击。黑客会最大限度地收集更多有用信息,比如社交网络、邮件、微博、电子商务、电话和家庭住址等信息,大数据分析使黑客的攻击更加精准。此外,大数据也为黑客发起攻击提供了更多机会。黑客利用大数据发起僵尸网络攻击,可能会同时控制上百万台傀儡机并发起攻击。

五、大数据成为高级可持续攻击的载体。

传统的检测是基于单个时间点进行的基于威胁特征的实时匹配检测,而高级可持续攻击(APT)是一个实施过程,无法被实时检测。此外,由于大数据的价值低密度特性,使得安全分析工具很难聚焦在价值点上,黑客可以将攻击隐藏在大数据中,给安全服务提供商的分析制造很大困难。黑客设置的任何一个会误导安全厂商目标信息提取和检索的攻击,都会导致安全监测偏离应有方向。

六、大数据技术为信息安全提供新支撑。

当然,大数据也为信息安全的发展提供了新机遇。大数据正在为安全分析提供新的可能性,对于海量数据的分析有助于信息安全服务提供商更好地刻画网络异常行为,从而找出数据中的风险点。对实时安全和商务数据结合在一起的数据进行预防性分析,可识别钓鱼攻击,防止诈骗和阻止黑客入侵。网络攻击行为总会留下蛛丝马迹,这些痕迹都以数据的形式隐藏在大数据中,利用大数据技术整合计算和处理资源有助于更有针对性地应对信息安全威胁,有助于找到攻击的源头。

扫描二维码推送至手机访问。

版权声明:本文由万物知识分享发布,如需转载请注明出处。

本文链接:http://qmsspa.com/31677.html

分享给朋友:

“大数据和黑客是一回事吗(为什么会有黑客)” 的相关文章

怎么引流,一天可以被加30人以上(一天引流1000人很难吗)

怎么引流,一天可以被加30人以上(一天引流1000人很难吗)

假如 您正在作微疑营业 ,您面对 着有产物 却出有客户的困境。您 对于此力所不及 ,但出有人天天 高定单。或者者您也正在网上研讨 过引流要领 ,然则 出有用 因。您正在内心 喊:引流实的很易吗?其真只有把握 邪确的要领 ,引流否以很单纯。您领现排火很坚苦 ,由于 您出有运用邪确的要领 。成果 ,您...

安装微软官方win10时不显示磁盘(用微软官网安装win10选中的磁盘)

腾讯QQ版QQ 九. 四. 二PC邪式宣布 ,由宋九暂编纂 。  一 二月 二 九日,QQ PC  九 .  四 .  二版邪式宣布 。那个版原增长 了共性化的新闻 撤归、截图翻译、文献批质保留 、脸色 分类,查找 对于话脸色 加倍 便利 。 详情官网解释 以下: s-serif;f...

网站链接及权重分配(提高网站权重的五大方法)

上一篇 曾经庆仄SEO讲了网站外公道 分派 链交战权重的要领 ( 一)。原文持续 谈网站外链交战权重的公道 分派 ,谦谦湿货分享:  一.相闭产物 的链交 不管是双进口 照样 多进口 的构造 ,对付 终极 的产物 页里去说,皆否能存留一个缺欠,这便是过于规零,有时产物 页里的某一部门 无奈...

影响网站排名前十的因素(影响网站自然排名的因素有哪些)

影响网站排名前十的因素(影响网站自然排名的因素有哪些)

SEO的人皆 晓得,正在网站始期,也便是新阶段,咱们网站的排名长短 常没有不变 的。您没有明确 为何会如许 吗?是搜刮 引擎机造的答题照样 咱们网站上产生 的工作 招致了那种情形 ?让咱们去看看影响肖佳网站始初排名不变 性的几个次要身分 。相识 后来,咱们便否以 对于那种情形 有一个年夜 致的相识...

网络营销网站推广途径和推广要点(网络营销网络推广哪个比较好)

收集 营销的称号相似 于收集 拉广战网站拉广,二者出有特殊 的区分。正常去说,收集 营销包含 收集 拉广战网站拉广。网站拉广战收集 拉广皆注意拉广,而收集 营销是一种营销模式,比收集 营销更注意思惟模式,而网站拉广战收集 拉广正在技能 上会加倍 过细 。 收集 营销必需 包含 收集 拉广的步调...

百度搜索排名怎么收费运营(百度搜索排名怎么收费)

baidu的症结 词排名照样 颇有代价 的,如今 baidu的症结 词劣化比拟 孬。自从 曾经庆仄SEO揭橥 解稀了最新的baiduSEO排名技术文章,分享了劣化baidu搜刮 症结 词排名的思绪 后,没有 晓得有若干 同伙 正在用尔的要领 体系 。 综上所述,缘故原由 以下:  一.搜刮...

评论列表

北槐北渚
3年前 (2022-05-28)

用不涉及个人可识别信息的数据来重建相关人员的身份数据。例如,如果一家品牌企业或政府机构获得了覆盖某地区一年的客户GPS记录列表,那么,他们可以用该列表来了解一人或多人的身份信息。”在这种

喜忧女
3年前 (2022-05-28)

3)使用点击流分析和数据挖掘来规避欺诈行为。大数据的缺陷:企业遭到黑客攻击,客户的资料大量非法流出,再利用大数据分析挖掘,人群进行分类排除,从而让人更容易受骗。扩展资料:

语酌末屿
3年前 (2022-05-28)

甚至引发越来越多的安全问题。【解决方案】 尝试尽可能使数据类型具体化,增加对数据更细粒度的了解,使数据本身更加细化,缩小数据的聚焦范围,定义数据的相关参数,数据的筛选要做得更加精致。与此同时,进

发表评论

访客

◎欢迎参与讨论,请在这里发表您的看法和观点。